Add like
Add dislike
Add to saved papers

Evaluation of knee cartilage thickness: A comparison between ultrasound and magnetic resonance imaging methods.

Knee 2017 March
BACKGROUND: Establishing clinically accessible measures of cartilage health is critical for assessing effectiveness of protocols to reduce risk of osteoarthritis (OA) development and progression. Cartilage thickness is one important measure in describing both OA development and progression. The objective was to determine the relationship between ultrasound and MRI measures of cartilage thickness in the medial femoral condyle.

METHODS: Mean cartilage thicknesses of the left medial femoral cartilage were measured via T1 weighted MRI and ultrasound imaging from transverse, anterior, middle, and posterior medial femoral regions in 10 healthy females (Mean±Std Dev) (1.66±0.08m, 59.5±8.3kg, 21.6±1.4years) and nine healthy males (1.80±0.08m, 79.1±6.2kg, 21.7±1.5years). Pearson correlations examined relationships between MRI and ultrasound measures. Bland-Altman plots evaluated agreement between the imaging modalities.

RESULTS: Transverse ultrasound thickness measures were significantly positively correlated with MRI middle (r=.67, P≤.05) and posterior thicknesses (r=.49, P≤.05) while the middle and posterior longitudinal ultrasound measures were significantly correlated to their respective MRI regions (r=.67, P≤.05 & r=.59 P≤.05, respectively). There was poor absolute agreement between correlated measures with ultrasound thickness measures being between 1.9 and 2.8mm smaller than MRI measures.

CONCLUSIONS: These results suggest that ultrasound may be a viable clinical tool to assess relative cartilage thickness in the middle and posterior medial femoral regions. However, the absolute validity of the ultrasound measure is called into question due to the larger MRI-based thickness measures.

LEVEL OF EVIDENCE: Level IV.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app