Add like
Add dislike
Add to saved papers

Proteomic-based research strategy identified laminin subunit alpha 2 as a potential urinary-specific biomarker for the medullary sponge kidney disease.

Kidney International 2017 Februrary
Medullary sponge kidney (MSK) disease, a rare kidney malformation featuring recurrent renal stones and nephrocalcinosis, continues to be diagnosed using expensive and time-consuming clinical/instrumental tests (mainly urography). Currently, no molecular diagnostic biomarkers are available. To identify such we employed a proteomic-based research strategy utilizing urine from 22 patients with MSK and 22 patients affected by idiopathic calcium nephrolithiasis (ICN) as controls. Notably, two patients with ICN presented cysts. In the discovery phase, the urine of 11 MSK and 10 controls, were randomly selected, processed, and analyzed by mass spectrometry. Subsequently, several statistical algorithms were undertaken to select the most discriminative proteins between the two study groups. ELISA, performed on the entire patients' cohort, was used to validate the proteomic results. After an initial statistical analysis, 249 and 396 proteins were identified exclusive for ICN and MSK, respectively. A Volcano plot and ROC analysis, performed to restrict the number of MSK-associated proteins, indicated that 328 and 44 proteins, respectively, were specific for MSK. Interestingly, 119 proteins were found to differentiate patients with cysts (all patients with MSK and the two ICN with renal cysts) from ICN without cysts. Eventually, 16 proteins were found to be common to three statistical methods with laminin subunit alpha 2 (LAMA-2) reaching the higher rank by a Support Vector Machine, a binary classification/prediction scheme. ELISA for LAMA-2 validated proteomic results. Thus, using high-throughput technology, our study identified a candidate MSK biomarker possibly employable in future for the early diagnosis of this disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app