JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Analysis and modeling of 255 source levels of merchant ships from an acoustic observatory along St. Lawrence Seaway.

An ensemble of 255 spectral source levels (SSLs) of merchant ships were measured with an opportunistic seaway acoustic observatory adhering to the American National Standards Institute/Acoustical Society of America S12.64-2009 standard as much as possible, and deployed in the 350-m deep lower St. Lawrence Seaway in eastern Canada. The estimated SSLs were sensitive to the transmission loss model. The best transmission loss model at the three measuring depths was an empirical in situ function for ranges larger than 300 m, fused with estimates from a wavenumber integration propagation model fed with inverted local geoacoustic properties for [300 to 1 m] ranges. Resulting SSLs still showed a high variability. Uni- and multi-variate analyses showed weak intermingled relations with ship type, length, breadth, draught, speed, age, and other variables. Cluster analyses distinguished six different SSL patterns, which did not correspond to distinctive physical characteristics of the ships. The broadband [20-500 Hz] source levels varied by 30 dB or more within all four 50-m length categories. Common SSL models based on frequency, length and speed failed to unbiasly replicate the observations. This article presents unbiased SSL models that explain 75%-88% of the variance using frequency, ship speed, and three other automatic identification system ship characteristics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app