JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Frequency based noise coherence-function extension and application to passive bottom-loss estimation.

Accurate modeling of acoustic propagation in the ocean waveguide is important to SONAR-performance prediction. Particularly in shallow waters, a crucial contribution to the total transmission loss is the bottom refection loss, which can be estimated passively by beamforming the natural surface-noise acoustic field recorded by a vertical line array of hydrophones. However, the performance in this task of arrays below 2 m of length is problematic for frequencies below 10 kHz It is shown in this paper that, when the data are free of interference from sources other than wind and wave surface noise, data from a shorter array can be used to approximate the coherence function of a longer array. This improves the angular resolution of the estimated bottom loss, often making use of data at frequencies above the array design frequency. Application to simulated and experimental data shows that the technique, rigorously justified for a halfspace bottom, is effective also on more complex bottom types. Dispensing with active sources, small autonomous underwater vehicles equipped with short arrays can be envisioned as compact, efficient seabed-characterization systems. The proposed technique is shown to improve significantly the reflection-loss estimate of an array that would be a candidate for such application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app