Add like
Add dislike
Add to saved papers

Super-Cell Piezoelectric Composite With 1-3 Connectivity.

The standard fabrication method for 1-3 piezocomposites for ultrasound transducers is the "dice and fill" method (DFM) in which lateral periodicity is introduced. This contributes to the appearance of spurious modes that can drastically affect the performance of the device if they appear near its thickness mode frequency, thus limiting the effective frequency range. A new 1-3 piezocomposite fabricated with a super-cell structure [1-3 super cell (13SC)] was designed in order to overcome these limitations. It consists of the merging of several periodic cells with 47% PZT volume fraction and epoxy resin as the matrix. Two lateral periodicities in one direction are defined as well as two different kerfs. The chosen cell shape is composed of five nonaligned square section rods ( 1 ×1 mm (2) ). For comparison of performance, two regular 1-3 piezocomposites (the same materials and equivalent periodicities) were fabricated by DFM. Electroacoustic responses in water were measured for the three composites being considered as transducers. Successive regular thinnings (from 2.8 to 1.1 mm) were carried out for each sample to increase the operating frequency (from around 0.4 to 1.3 MHz) and study the evolution of the characteristics (bandwidth and sensitivity). The experimental results confirmed the behavior of those obtained with numerical simulations, showing that the 13SC composite can be used in this entire frequency range, unlike regular composites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app