Add like
Add dislike
Add to saved papers

Morphology dependence of electrochemical properties on palladium nanocrystals.

In recent years, shape control has received the most attention in the exploration of Pd nanocrystals (NCs). However, exploring an efficient approach for the systematic production of Pd NCs under similar reaction conditions still presents a significant challenge, which is significantly important to clearly explain the effectiveness of morphology on the catalytic activity of Pd NCs. We designed and accomplished a facile strategy for the morphology transformation between Pd nanosheets and Pd nanotetrahedra by simply controlling the reaction temperature. A growth mechanism was proposed based on TEM images of the time-dependent morphology evolution. The Pd nanosheets and Pd nanotetrahedra exhibit higher activity for the methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) compared with the benchmark Pd/C catalysts, and their activities are dependent on the morphology. In particular, Pd nanosheets show an increased activity by 3.81 (MOR) and 2.86 (ORR) times due to their large specific surface area and exposed facets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app