Add like
Add dislike
Add to saved papers

Individual and combined effects of two types of phenological shifts on predator-prey interactions.

Ecology 2016 December
Timing of phenological events varies among years with natural variation in environmental conditions and is also shifting in response to climate change. These phenological shifts likely have many effects on species interactions. Most research on the ecological consequences of phenological shifts has focused on variation in simple metrics such as phenological firsts. However, for a population, a phenological event exhibits a temporal distribution with many attributes that can vary (e.g., mean, variance, skewness), each of which likely has distinct effects on interactions. In this study, we manipulated two attributes of the phenological distribution of a prey species to determine their individual and combined effects on predator-prey interactions. Specifically, we studied how shifts in the mean and variation around the mean (i.e., synchrony) of hatching by tadpoles (Hyla cinerea) affected interactions with predatory dragonfly naiads (Tramea carolina). At the end of larval development, we quantified survival and growth of predator and prey. We found that both types of shifts altered demographic rates of the prey; that the effects of synchrony shifts, though rarely studied, were at least as strong as those due to mean shifts; and that the combined effects of shifts in synchrony and mean were additive rather than synergistic. By dissecting the roles of two types of shifts, this study represents a significant step toward a comprehensive understanding of the complex effects of phenological shifts on species interactions. Embracing this complexity is critical for predicting how climate change will alter community dynamics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app