Add like
Add dislike
Add to saved papers

Long non-coding RNA XIST promotes cell growth and invasion through regulating miR-497/MACC1 axis in gastric cancer.

Oncotarget 2017 January 18
Abnormal expression of long non-coding RNA (lncRNAs) often contributes to unrestricted growth and invasion of cancer cells. LncRNA XIST expression is up-regulated in several cancers, however, its modulatory mechanism in gastric cancer (GC) has not been elucidated. In the present study, we found that XIST expression was significantly increased in GC tissues and cell lines. LncRNA XIST promoted cell cycle progression from the G1 phase to the S phase and protected cells from apoptosis, which contributed to GC cell growth. LncRNA XIST also contributed to GC cell invasion both in vitro and in vivo. We revealed that XIST functioned as competing endogenous RNA to repress miR-497, which controlled its down-stream target MACC1. We proposed that XIST was responsible for GC cell proliferation and invasion and XIST exerted its function through the miR-497/MACC1 axis. Our findings suggested that lncRNA XIST may be a candidate prognostic biomarker and a target for new therapies in GC patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app