Add like
Add dislike
Add to saved papers

Higher-Spin Theory of the Magnetorotons.

Physical Review Letters 2016 November 19
Fractional quantum Hall liquids exhibit a rich set of excitations, the lowest energy of which are the magnetorotons with dispersion minima at a finite momentum. We propose a theory of the magnetorotons on the quantum Hall plateaux near half filling, namely, at filling fractions ν=N/(2N+1) at large N. The theory involves an infinite number of bosonic fields arising from bosonizing the fluctuations of the shape of the composite Fermi surface. At zero momentum there are O(N) neutral excitations, each carrying a well-defined spin that runs integer values 2,3,…. The mixing of modes at nonzero momentum q leads to the characteristic bending down of the lowest excitation and the appearance of the magnetoroton minima. A purely algebraic argument shows that the magnetoroton minima are located at qℓ_{B}=z_{i}/(2N+1), where ℓ_{B} is the magnetic length and z_{i} are the zeros of the Bessel function J_{1}, independent of the microscopic details. We argue that these minima are universal features of any two-dimensional Fermi surface coupled to a gauge field in a small background magnetic field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app