Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Video-Audio Media
Add like
Add dislike
Add to saved papers

Tools to Study the Role of Architectural Protein HMGB1 in the Processing of Helix Distorting, Site-specific DNA Interstrand Crosslinks.

High mobility group box 1 (HMGB1) protein is a non-histone architectural protein that is involved in regulating many important functions in the genome, such as transcription, DNA replication, and DNA repair. HMGB1 binds to structurally distorted DNA with higher affinity than to canonical B-DNA. For example, we found that HMGB1 binds to DNA interstrand crosslinks (ICLs), which covalently link the two strands of the DNA, cause distortion of the helix, and if left unrepaired can cause cell death. Due to their cytotoxic potential, several ICL-inducing agents are currently used as chemotherapeutic agents in the clinic. While ICL-forming agents show preferences for certain base sequences (e.g., 5'-TA-3' is the preferred crosslinking site for psoralen), they largely induce DNA damage in an indiscriminate fashion. However, by covalently coupling the ICL-inducing agent to a triplex-forming oligonucleotide (TFO), which binds to DNA in a sequence-specific manner, targeted DNA damage can be achieved. Here, we use a TFO covalently conjugated on the 5' end to a 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) psoralen to generate a site-specific ICL on a mutation-reporter plasmid to use as a tool to study the architectural modification, processing, and repair of complex DNA lesions by HMGB1 in human cells. We describe experimental techniques to prepare TFO-directed ICLs on reporter plasmids, and to interrogate the association of HMGB1 with the TFO-directed ICLs in a cellular context using chromatin immunoprecipitation assays. In addition, we describe DNA supercoiling assays to assess specific architectural modification of the damaged DNA by measuring the amount of superhelical turns introduced on the psoralen-crosslinked plasmid by HMGB1. These techniques can be used to study the roles of other proteins involved in the processing and repair of TFO-directed ICLs or other targeted DNA damage in any cell line of interest.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app