Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Longitudinal Characterization of [18F]-FDG and [18F]-AV45 Uptake in the Double Transgenic TASTPM Mouse Model.

We aimed to monitor the timing of amyloid-β deposition in relation to changes in brain function using in vivo imaging with [18F]-AV45 and [18F]-FDG in a mouse model of Alzheimer's disease. TASTPM transgenic mice and wild-type controls were scanned longitudinally with [18F]-AV45 and [18F]-FDG before (3 months of age) and at multiple time points after the onset of amyloid deposition (6, 9, 12, and 15 months of age). As expected with increasing amyloidosis, TASTPM mice demonstrated progressive age-dependent increases in [18F]-AV45 uptake that were significantly higher than for WT from 9 months onwards and correlated to ex vivo measures of amyloid burden. The metabolism of [18F]-AV45 produces several brain penetrant radiometabolites and normalization to a reference region helps to negate this non-specific binding and improve the sensitivity of [18F]-AV45. The observed trajectory of [18F]-FDG alterations deviated from our proposed hypothesis of gradual decreases with worsening amyloidosis. While [18F]-FDG uptake in TASTPM mice was significantly lower than that of WT at 9 months, reduced [18F]-FDG was not associated with aging in TASTPM mice. Moreover, [18F]-FDG uptake did not correlate to measures of ex vivo amyloid burden. Our findings suggest that while amyloid-β is sufficient to induce hypometabolism, these pathologies are not linked in a dose-dependent manner in TASTPM mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app