Add like
Add dislike
Add to saved papers

A pH-responsive sequential-disassembly nanohybrid for mitochondrial targeting.

Nanoscale 2017 January 8
Cationic materials have been reported as promising tools for targeting to mitochondria which are the "power houses" and "metabolic garbage keepers" of cells. However, their positive nature also restricts their in vivo application due to the quick clearance. Herein, we fabricated a nanohybrid consisting of the pH-responsive N-(2-hydroxypropyl)methacrylamide (HPMA) co-polymer (R-P) shells and positive mesoporous silica nanoparticle cores via electrostatic interaction. The anticancer drug, docetaxel (DTX), was encapsulated in the positive MSN cores (MSN-DTX). Once concealed by the anionic R-P shield, the assembled nanohybrid R-P@MSN-DTX will achieve prolonged blood circulation thereby leading to an enhanced EPR effect. At mildly acidic tumor environmental pH, first-stage charge reversion took place due to the hydrolysis of the amide bond on HPMA co-polymers. The de-attachment of the HPMA co-polymer occurred because of the positive charge repulsion and partial exposure of the positively charged MSN core promoted the cell internalization. The second-stage pH-responsiveness in the endo/lysosomes with a more acidic environment accelerates the disassembly of the nanohybrid and the leakage of the core facilitated the endo/lysosome escape and mitochondrial targeting with the help of intracellular compartmental acidity. Gathering up the characteristics of neutralized charge and stepwise pH-responsiveness, the R-P@MSN-DTX acquired a good tumor inhibition rate of 72.6% on nude mice. Our report provided a reference for systemic mitochondrial targeting achieved by the union of "assembly-disassembly".

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app