JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Overview on Therapeutic Applications of Microparticulate Drug Delivery Systems.

Research in novel drug delivery systems is being explored competitively in order to attain maximum therapeutic effect while minimizing the adverse effects. Despite several advancements in pharmaceutical formulations, one of the major challenges still persisting is sustained drug release. Microencapsulation enacts as an intelligent approach with a strong therapeutic impact and is in demand globally in medical technology due to its specific and attractive properties, including biocompatibility, stability, target specificity, uniform encapsulation, better compliance, and controlled and sustained release patterns that are responsible for diminishing the toxicity and dosage frequency. Microparticles are successful delivery systems that encapsulate both water-insoluble and sparingly water-soluble agents to elicit their efficacy with a great potential attributed to their unique properties: particle size, shape, structure, drug loading, entrapment efficiency, porosity, and release profile. Several marketed microparticle-based formulations are available, including risperidone, buserelin, and octreotide acetate, and some of them are in clinical trials. The present review highlights the detailed therapeutic applications of microparticles with advances from the last decade to treat various disease conditions, including cancer, diabetes, cardiovascular diseases, and neurological disorders, as well as for vaccine delivery, ocular and pulmonary delivery, gene transfer, etc., and exemplifies the future perspectives in these aspects. One day in the future, microparticle-based formulations may become broadly researched in drug delivery systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app