Add like
Add dislike
Add to saved papers

A total station spatial positioning method based on rotary laser scanning and ultrasonic ranging.

Total station spatial coordinator measuring technology is extensively applied in the large-scale measurement of industrial assembly and manufacturing for its flexibility and adaptability. The existing total station technology has some principal limits such as poor efficiency and single tasking; in order to achieve the total station spatial coordinator measuring technology with the advantages of multi-task, real-time measurement, and high accuracy, this paper presents a novel total station measurement method by using multi-laser plane constraints established through rotating planar planes and distance information obtained with an ultrasonic ranging method. With the spatial divergence angles of the optoelectronic scanning and ultrasonic arrays, this method can measure the spatial coordinates in multi-task and real-time with a single station and a portable target bar. Experimental results show that the proposed method is feasible and valid with satisfactory accuracy. The maximum distance measurement error is less than 0.2 mm in a volume that is 5 m far away from the station.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app