Add like
Add dislike
Add to saved papers

Proton pinhole imaging on the National Ignition Facility.

Pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4 ×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. When the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app