Add like
Add dislike
Add to saved papers

Gradient-echo EPI using a high-degree shim insert coil at 7 T: Implications for BOLD fMRI.

PURPOSE: To quantitatively assess the effects of high degree and order (1st -4th+ ) relative to 1st -2nd degree B0 shimming at 7 Tesla (T) on gradient-echo echo planar imaging (GE-EPI) and blood-oxygen-level dependent (BOLD) activation.

METHODS: Simulations and GE-EPI were performed at (2mm)3 and (3mm)3 resolution, evaluating the temporal signal-to-noise ratio (tSNR), transverse relaxivity ( R2*), BOLD % signal change and activated pixel counts in a breath-hold task.

RESULTS: Comparing the 1st -4th+ degree with 1st -2nd degree shimmed B0 maps generated spatially varying regions of Δ|B0|=|B01-2|-|B01-4+|. As binned in 10-Hz intervals, the two center Δ|B0 | (±10 Hz) bins maintained the B0 offset of 48.6% of gray-matter pixels. In the positive Δ|B0 | bins greater than 10 Hz, the 1st -4th+ degree shimming improved the B0 offset in 41.1%; in negative Δ|B0 | bins less than -10 Hz, the offset worsened in 10.2% of the pixels. In the positive Δ|B0 | bins, we found variable but significant increases in BOLD sensitivity; the negative Δ|B0 | bins showed significant decreases. In the breath-hold studies, positive bins showed significantly increased activated pixel numbers (+5-29%), whereas negative bins showed -18 to 0% decline.

CONCLUSION: 1st -4th+ degree shimming maintained B0 homogeneity over central brain regions while improving most of the other regions, including the inferior frontal lobe. Magn Reson Med 78:1734-1745, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app