Add like
Add dislike
Add to saved papers

Fungal biomass as biosorbent for the removal of Acid Blue 161 dye in aqueous solution.

Physical and thermal treatment was used to inactivate Trametes sp. SC-10 fungus. The resulting biomass was named BTV, characterized by analytical techniques such as SEM, EDX, FTIR, BET, and Barrett-Joyner-Halenda (BJH) model. pH, kinetic, and equilibrium adsorption studies with the Acid Blue 161 (AB-161) dye were investigated at 303.15 K. The kinetics of the biosorption process were examined at 600.00 and 1300 mg L(-1), using pseudo-first-order, pseudo-second-order, and Avrami fractional-order models. The maximum biosorption capacity of BTV for AB-161 dye was 221.6 mg g(-1). Considering the biosorption data and the functional groups of BTV, it can be inferred that the sorption mechanism of AB-161 is regulated by electrostatic interactions between ionized dye molecules and negative charges on BTV in an aqueous solution. Finally, the BTV was tested with a simulated effluent with 89.47% efficiency, presenting the BTV as a biosorbent for real effluents polluted with dyes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app