Add like
Add dislike
Add to saved papers

A Fluorescence Sensor for Lead (II) Ions Determination Based on Label-Free Gold Nanoparticles (GNPs)-DNAzyme Using Time-Gated Mode in Aqueous Solution.

This paper describes a label-free 17E DNAzyme-based time-gated fluorescence sensor for Pb2+ detection by unmodified gold nanoparticles (GNPs) and a terbium ternary complex. The fluorophore that used in this paper is a terbium ternary complex. Its signal can be measured in a time-gated manner which could eliminate most of the unspecific fluorescent background. It is well known that unfolded single-stranded DNA (ssDNA) could be adsorbed on GNPs while double-stranded DNA could not. The cleavage of the substrate by the 17E DNAzyme in the presence of Pb2+ causes the release of ssDNA from the 17E-17S duplex to be absorbed onto GNPs, preventing the aggregation of GNPs and then leading to a fluorescence decrease of terbium ternary complex. By means of this method, the authors have successfully detected Pb2+ over a range of 10 nM to 2500 nM with a detection limit of 1.7 nM. The sensor also exhibited good selectivity. The sensor provided a simple, cost-effective, rapid and sensitive measurement tool for Pb2+ detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app