Add like
Add dislike
Add to saved papers

Inhibition of JNK suppresses autophagy and attenuates insulin resistance in a rat model of nonalcoholic fatty liver disease.

Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease, the pathological process of which is complex. Activation of the c‑Jun N‑terminal kinase (JNK) signaling pathway is associated with the mechanism underlying obesity-induced insulin resistance. Furthermore, the JNK signaling pathway and dysfunctional autophagy serve important roles in hepatic lipid metabolism. However, the exact role of JNK in autophagy and obesity‑induced insulin resistance is not fully understood. Therefore, the present study aimed to investigate the underlying mechanisms by which the JNK signaling pathway regulates autophagy and insulin resistance in fatty liver. A rat model of NAFLD was established using a high‑fat diet (HFD), and insulin resistance in the livers of HFD rats was determined by peritoneal glucose tolerance testing. The results indicated that a HFD induced impaired glucose tolerance, liver function injury, insulin resistance and increased autophagy in rats. Treatment with SP600125, an inhibitor of JNK, relieved NAFLD in rats. Furthermore, SP600125 decreased the expression levels of autophagy-associated genes, including Beclin-1, microtubule-associated protein 1A/1B light chain 3, autophagy related gene (Atg)3 and Atg5, and the phosphorylation of insulin receptor (IR) β-subunit, IR substrate-1 and protein kinase B in vivo. In conclusion, JNK inhibition may suppress autophagy and attenuate insulin resistance. Therefore, JNK inhibition may provide a novel therapeutic strategy for the treatment of NAFLD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app