Add like
Add dislike
Add to saved papers

Evaluation of Anti-inflammatory Effects of Steroids and Arthritis-Related Biotherapies in an In Vitro Coculture Model with Immune Cells and Synoviocytes.

BACKGROUND: During rheumatoid arthritis (RA), steroids and biotherapies are used alone and combined. Efficacy has been established in clinical trials but their differential effects at the cellular level are less documented. The aim was to study these cellular effects using an in vitro model with synoviocytes interacting with peripheral blood mononuclear cells (PBMC) to reproduce the interactions in the RA synovium.

METHODS: Activated-PBMC were cocultured with RA synoviocytes during 48 h. A dose-response of methylprednisolone (MP) was tested and different biotherapies (Infliximab, Etanercept, Adalimumab, Tocilizumab, Abatacept, and Rituximab) were added alone or in combination with MP. Cytokine production (IL-17, IL-6, IL-1β, IFN-γ and IL-10) was measured by ELISA.

RESULTS: Addition of MP to cocultures inhibited the production of all cytokines. The response to the biotherapies alone was treatment-dependent. IL-17 production was inhibited only by Tocilizumab (p = 0.004), while IL-6 was decreased only by Infliximab (p ≤ 0.002). IL-1β level was affected in all conditions (p ≤ 0.03). IFN-γ production was mainly decreased by Infliximab (p = 0.004) and IL-10 by Infliximab and Tocilizumab (p ≤ 0.004). The combination MP and biotherapies did not induce an additional effect on pro-inflammatory cytokine inhibition. The combination MP and biotherapies induced a higher IL-10 secretion than MP alone, mainly with Rituximab.

CONCLUSION: Steroids inhibited the secretion of all cytokines, and low doses were as potent. The anti-inflammatory effect of biotherapies was dependent on their mechanism of action. MP and biotherapy combination did not enhance the inhibitory effect on pro-inflammatory cytokines but could have a beneficial effect by increasing IL-10 production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app