Add like
Add dislike
Add to saved papers

Symmetry effects on naturally arising chimera states in mechanical oscillator networks.

Chaos 2016 November
Coupled oscillators were believed to exclusively exist in a state of synchrony or disorder until Kuramoto theoretically proved that the two states could coexist, called a chimera state, when portions of the population had a spatial dependent coupling. Recent work has demonstrated the spontaneous emergence of chimera states in an experiment involving mechanical oscillators coupled through a two platform swing. We constructed an experimental apparatus with three platforms that each contains a population of mechanical oscillators in order investigate the effects of a network symmetry on naturally arising chimera states. We considered in more detail the case of 15 metronomes per platform and observed that chimera states emerged as a broad range of parameters, namely, the metronomes' nominal frequency and the coupling strength between the platforms. A scalability study shows that chimera states no longer arise when the population size is reduced to three metronomes per platform. Furthermore, many chimera states are seen in the system when the coupling between platforms is asymmetric.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app