Add like
Add dislike
Add to saved papers

Interaction between synchronization and motion in a system of mobile agents.

Chaos 2016 November
In this paper, we study synchronization in time-varying networks inherited by the Vicsek's model of self-propelled particles. In our model, each particle/agent moves in a two dimensional space according to the Vicsek's rules and is associated to a chaotic system. The dynamics of two oscillators are coupled with each other only when agents are at a distance less than an interaction radius. We investigate the system behavior with respect to some fundamental parameters, and, in particular, to the noise level, which for increasing intensity drives the system from an ordered motion to a disordered one. We show that the global dynamics is ruled by the interplay between motion characteristics and dynamical coupling with synchronization either favored or inhibited by a coordinated motion of the self-propelled particles. Finally, we provide semi-analytical estimation for the synchronization thresholds for interconnections occurring at a time-scale shorter than that of the associated dynamical systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app