Add like
Add dislike
Add to saved papers

Inhibition of the p38-MAPK signaling pathway suppresses the apoptosis and expression of proinflammatory cytokines in human osteoarthritis chondrocytes.

Cytokine 2017 Februrary
This study aims to investigate the effects of p38-MAPK signaling pathway on the apoptosis and expression of proinflammatory cytokines in human osteoarthritis (OA) chondrocytes. Human articular cartilage specimens were obtained from 57 OA patients and 31 patients with lower extremity traumatic amputations. The expressions of p38-MAPK pathway-related proteins in cartilage tissue were detected by immunochemistry. Cultured chondrocytes isolated from human OA cartilage were assigned into the blank group, the IL-1β group, the PD (PD980959, ERK pathway inhibitors)+IL-1β group, the SB (SB203580, p38 pathway inhibitors)+IL-1β group, and the SP (SP600125, JNK signaling pathway inhibitors)+IL-1β group. Cell proliferation and apoptosis were detected by MTT assay and flow cytometry. Western blotting was used to detect the expressions of MAPK pathway-related proteins. The mRNA expressions of IL-1, IL-6, and TNF-α were detected by qRT-PCR. The positive rates of p-p38, p-JNK and p-ERK in OA cartilage were higher than those in normal cartilage. Compared with the blank group, cell proliferation rate was decreased, cell apoptotic rate was increased, the mRNA expressions of IL-1, IL-6, TNF-α and the expressions of p-p38, p-JNK and p-ERK were increased in the IL-1β group, while opposite trends were observed in the PD+IL-1β, SB+IL-1β, and SP+IL-1β groups. Our study provides evidence that inhibition of the p38-MAPK signaling pathway could suppress the apoptosis and expression of proinflammatory cytokines in human OA chondrocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app