Add like
Add dislike
Add to saved papers

A New Efficient Method for Detecting Phase Singularity in Cardiac Fibrillation.

BACKGROUND: The point of phase singularity (PS) is considered to represent a spiral wave core or a rotor in cardiac fibrillation. Computational efficiency is important for detection of PS in clinical electrophysiology. We developed a novel algorithm for highly efficient and robust detection of PS.

METHODS: In contrast to the conventional method, which calculates PS based on the line integral of the phase around a PS point equal to ±2π (the Iyer-Gray method), the proposed algorithm (the location-centric method) looks for the phase discontinuity point at which PS actually occurs. We tested the efficiency and robustness of these two methods in a two-dimensional mathematical model of atrial fibrillation (AF), with and without remodeling of ionic currents.

RESULTS: 1. There was a significant association, in terms of the Hausdorff distance (3.30 ± 0.0 mm), between the PS points measured using the Iyer-Gray and location-centric methods, with almost identical PS trajectories generated by the two methods. 2. For the condition of electrical remodeling of AF (0.3 × ICaL), the PS points calculated by the two methods were satisfactorily co-localized (with the Hausdorff distance of 1.64 ± 0.09 mm). 3. The proposed location-centric method was substantially more efficient than the Iyer-Gray method, with a 28.6-fold and 28.2-fold shorter run times for the control and remodeling scenarios, respectively.

CONCLUSION: We propose a new location-centric method for calculating PS, which is robust and more efficient compared with the conventionally used method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app