Add like
Add dislike
Add to saved papers

Video stabilization in atmosphere turbulent conditions based on the Laplacian-Riesz pyramid.

Optics Express 2016 November 29
Video stabilization in atmosphere turbulent conditions is aimed at removing spatiotemporally varying distortions from video recordings. Conventional shaky video stabilization approaches do not perform effectively under turbulent circumstances due to the erratic motion common to those conditions. Using complex-valued image pyramids, we propose a method to mitigate this erratic motion in videos. First, each frame of a video is decomposed into different spatial frequencies using the Laplacian pyramid. Second, a Riesz transform is adopted to extract the local amplitude and the local phase of each sub-band. Next, low-pass filters are designed to attenuate the local amplitude and phase variations to remove turbulence-induced distortions. Experimental results show that the proposed approach is efficient and provides stabilizing video in atmosphere turbulent conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app