Add like
Add dislike
Add to saved papers

Vectorial effect of hybrid polarization states on the collapse dynamics of a structured optical field.

Optics Express 2016 November 29
The collapse dynamics of a structured optical field with a distribution of spatially-variant states of polarization (SoP) and a spiral phase in the field cross section is studied using the two-dimensional coupled nonlinear Schrӧdinger equations. The self-focusing of a structured optical field with an inhomogeneous SoP distribution can give rise to new phenomena of collapse dynamics that is completely different from a scalar field. The collapse patterns are closely related to the topological charges of the vortexas well as the polarization, the initial power, and the SoP distribution in the field cross section. A single on-axis collapse or multiple off-axis partial collapses may occur due to the self-focusing effects of linearly, elliptically and circularly polarized components located at different positions of the field cross-section. The polarization in the core of the collapsing beam is always linearly polarized. The structured collapsing beams, which are driven by the vortex, propagate along a spiral trajectory in a saturated medium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app