Add like
Add dislike
Add to saved papers

Spin Hall effect of transmitted light in a three-layer waveguide with lossy epsilon-near-zero metamaterial.

Optics Express 2016 November 29
We study spin Hall effect (SHE) of transmitted light in a three-layer waveguide with epsilon-near-zero (ENZ) metamaterial. As the increased loss of anisotropic ENZ metamaterial brings decreased propagation loss for oblique incidence, the transmission of incident light is enhanced which induces a different distribution of transverse shift peaks. Based on simulation results, the influences of ENZ permittivity components and thickness as well as gold layer thickness on transverse shift of left-circularly polarized light in ENZ/Au/ENZ waveguide are analyzed. In order to make our results convincing we make use of alternating thin layers of silver and germanium stacking to construct anisotropic ENZ metamaterial. The transverse shifts of incident light with different ENZ metamaterial and gold layer thicknesses are obtained. Calculation results show the maximum transverse shifts of left-polarized light for linear polarized light can achieve 49.6 microns. Meanwhile, the enhanced SHE of transmitted light is invariant with the variation of gold layer which shows a great tolerance to fabrication error.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app