Add like
Add dislike
Add to saved papers

Depolarization of a randomly distributed plasmonic meander metasurface characterized by Mueller matrix spectroscopic ellipsometry.

Optics Express 2016 November 29
Metallic nanostructures offer efficient solutions in polarization control with a very low thickness. In this report, we investigate the optical properties of a nano-fabricated plasmonic pseudo-depolarizer using Mueller matrix spectroscopic ellipsometry in transmission configuration. The depolarizer is composed of 256 square cells, each containing a periodically corrugated metallic film with random orientation. The full Mueller matrix was analyzed as a function of incident angle in a range between 0 and 20° and over the whole rotation angle range. Depolarization could be achieved in two visible wavelength regions around the short-range and long-range surface plasmon polariton frequencies, respectively. Furthermore, depolarization for circularly polarized light was 2.5 times stronger than that for linearly polarized light. Our results could work as a guidance for realizing a broadband high efficiency dielectric metasurface depolarizers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app