Add like
Add dislike
Add to saved papers

Improving the luminescence enhancement of hybrid Au nanoparticle-monolayer MoS<sub>2</sub> by focusing radially-polarized beams.

Optics Express 2016 November 29
Monolayer transition-metal dichalcogenides (TMDs) have grown as fantastic building blocks for optoelectronic applications, owing to their direct band gap, transparency, and mechanical flexibility. Since the luminescence of monolayer TMDs suffers from low light absorption and emission, surface plasmons, which confine light at subwavelength and enhance the local electric field, are utilized to boost both excitation and emission fields of TMDs, enabling strong light-matter interaction at the nano-scale. Meanwhile, radially-polarized beams (RPBs) as new and attractive excitation source have found many applications in surface plasmon polaritons, optical tweezer and so on. Here, by using RPBs, we demonstrate the photoluminescence (PL) enhancement of monolayer molybdenum disulfide (MoS<sub>2</sub>) hybridized with 210 nm-diameter gold nanoparticle (AuNP) is improved by about 1.37-fold compared with linearly-polarized beams (LPBs). Besides, the PL enhancement with RPBs depends on the size of AuNP as well. With 210nm-diameter AuNP, the PL enhancement is more than 1.5-fold higher than that with 60nm-diameter AuNP. This study highlights that RPBs are superior to LPBs for tuning the near-field system response and shows that RPBs drive a valuable avenue to further study the emerging two-dimentional materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app