Add like
Add dislike
Add to saved papers

High-resolution Brillouin optical correlation domain analysis with no spectral scanning.

Optics Express 2016 November 29
Distributed Brillouin fiber sensors typically rely on the reconstruction of the steady-state Brillouin gain spectrum (BGS), through spectral scanning of the frequency offset between the pump and signal waves. In this work, we propose and demonstrate an alternative approach, in which the local Brillouin frequency shift (BFS) is extracted from temporal transient analysis of the step response of the amplified signal wave. Measurements are taken at only two arbitrary frequency offsets between pump and signal. No spectral scanning and no prior knowledge of a reference BGS are necessary. The principle is supported by analytic and numeric solutions of the differential equations of stimulated Brillouin scattering. The BFS of a 2 meters-long fiber under test was measured with 1 MHz accuracy and a dynamic range of 200 MHz. Transient measurements were also performed in a Brillouin optical correlation domain analysis (B-OCDA) experiment with 4 cm resolution, standard deviation of 2.4 MHz and 100 MHz dynamic range. A 4 cm-wide hot-spot was properly identified in the measurements. Multiple correlation peaks could be addressed in a single flight of a pump pulse. The results represent the first B-OCDA that is free of spectral scanning. This new measurement concept may be applicable to random-access distributed and dynamic monitoring of sound and vibration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app