Add like
Add dislike
Add to saved papers

Femtosecond laser direct-write waveplates based on stress-induced birefringence.

Optics Express 2016 November 29
The use of femtosecond lasers to introduce controlled stress states has recently been demonstrated in silica glass. We use this technique, in combination with chemical etching, to generate and control stress-induced birefringence over a well-defined region of interest, demonstrating direct-write wave plates with precisely tailored retardance levels. This tailoring enables the fabrication of laser-written polarization optics that can be tuned to any wavelength for which silica is transparent, and with a clear aperture free of any laser modifications. Using this approach, we achieve sufficient retardance to act as a quarter-wave plate. The stress distribution within the clear aperture is analyzed and modeled, providing a generic template that can be used as a set of design rules for laser-machined polarization devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app