Add like
Add dislike
Add to saved papers

Numerical modeling of fiber specklegram sensors by using finite element method (FEM).

Optics Express 2016 November 29
Although experimental advances in the implementation and characterization of fiber speckle sensor have been reported, a suitable model to interpret the speckle-pattern variation under perturbation is desirable but very challenging to be developed due to the various factors influencing the speckle pattern. In this work, a new methodology based on the finite element method (FEM) for modeling and optimizing fiber specklegram sensors (FSSs) is proposed. The numerical method allows computational visualization and quantification, in near field, of changes of a step multi-mode fiber (SMMF) specklegram, due to the application of a uniformly distributed force line (UDFL). In turn, the local modifications of the fiber speckle produce changes in the optical power captured by a step single-mode fiber (SSMF) located just at the output end of the SMMF, causing a filtering effect that explains the operation of the FSSs. For each external force, the stress distribution and the propagations modes supported by the SMMF are calculated numerically by means of FEM. Then, those modes are vectorially superposed to reconstruct each perturbed fiber specklegram. Finally, the performance of the sensing mechanism is evaluated for different radius of the filtering SSMF and force-gauges, what evidences design criteria for these kinds of measuring systems. Results are in agreement with those theoretical and experimental ones previously reported.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app