Add like
Add dislike
Add to saved papers

Optimal phase element for generating a perfect optical vortex.

We derived exact analytical relationships to describe the complex amplitude of a perfect optical vortex generated by means of three different optical elements, namely, (i) an amplitude-phase element with a transmission function proportional to a Bessel function, (ii) an optimal phase element with a transmission equal to the sign function of a Bessel function, and (iii) a spiral axicon. The doughnut intensity was shown to be highest when using an optimal phase element. The spiral-axicon-aided diffraction ring was found to be twice as wide as when generated using two other elements. Thus, the optimal filter was shown to be best suited for generating a perfect optical vortex. The simulation results were shown to corroborate theoretical predictions, with the experiment being in agreement with theory and simulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app