JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A temporal assessment of nematode community structure and diversity in the rhizosphere of cisgenic Phytophthora infestans-resistant potatoes.

BMC Ecology 2016 December 2
BACKGROUND: Nematodes play a key role in soil processes with alterations in the nematode community structure having the potential to considerably influence ecosystem functioning. As a result fluctuations in nematode diversity and/or community structure can be gauged as a 'barometer' of a soil's functional biodiversity. However, a deficit exists in regards to baseline knowledge and on the impact of specific GM crops on soil nematode populations and in particular in regard to the impact of GM potatoes on the diversity of nematode populations in the rhizosphere. The goal of this project was to begin to address this knowledge gap in regards to a GM potato line, cisgenically engineered for resistance to Phytophthora infestans (responsible organism of the Irish potato famine causing late blight disease). For this, a 3 year (2013, 2014, 2015) field experimental study was completed, containing two conventional genotypes (cvs. Desiree and Sarpo Mira) and a cisgenic genotype (cv. Desiree + Rpi-vnt1). Each potato genotype was treated with different disease management strategies (weekly chemical applications and corresponding no spray control). Hence affording the opportunity to investigate the temporal impact of potato genotype, disease management strategy (and their interaction) on the potato rhizosphere nematode community.

RESULTS: Nematode structure and diversity were measured through established indices, accounts and taxonomy with factors recording a significant effect limited to the climatic conditions across the three seasons of the study and chemical applications associated with the selected disease management strategy. Based on the metrics studied, the cultivation of the cisgenic potato genotype exerted no significant effect (P > 0.05) on nematode community diversity or structure. The disease management treatments led to a reduction of specific trophic groups (e.g. Predacious c-p = 4), which of interest appeared to be counteracted by a potato genotype with vigorous growth phenotype e.g. cv. Sarpo Mira. The fluctuating climates led to disparate conditions, with enrichment conditions (bacterial feeding c-p = 1) dominating during the wet seasons of 2014 and 2015 versus the dry season of 2013 which induced an environmental stress (functional guild c-p = 2) on nematode communities.

CONCLUSIONS: Overall the functional guild indices in comparison to other indices or absolutes values, delivered the most accurate quantitative measurement with which to determine the occurrence of a specific disturbance relative to the cultivation of the studied cisgenic P. infestans-resistant potatoes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app