Add like
Add dislike
Add to saved papers

1,25-Dihydroxyvitamin D 3 stimulates odontoblastic differentiation of human dental pulp-stem cells in vitro.

BACKGROUND: 1,25-Dihydroxyvitamin D3 (1,25-OH D3 ) plays an important role in mineralized tissue metabolism, including teeth. However, few studies have addressed its role in odontoblastic differentiation of human dental pulp-stem cells (hDPSCs).

AIM: This study aimed to understand the influence of various concentrations of 1,25-OH D3 on the proliferation capacity and early dentinogenesis responses of hDPSCs.

MATERIALS AND METHODS: hDPSCs were obtained from the impacted third molar teeth. Monolayer cultured cells were incubated with a differentiation medium containing different concentrations of 1,25-OH D3 (0.001, 0.01, and 0.1 µM). All groups were evaluated by S-phase rate [immunohistochemical (IHC) bromodeoxyuridine (BrdU) staining], STRO-1 and dentin sialoprotein (DSP)+ levels (IHC), and alkaline phosphatase (ALP, enzyme-linked immunosorbent assay (ELISA)) levels.

RESULTS: The number of cells that entered the S-phase was determined to be the highest and lowest in the control and 0.001 µM 1,25-OH D3 groups, respectively. The 0.1 µM vitamin D3 group had the highest increase in DSP+ levels. The highest Stro-1 levels were detected in the control and 0.1 µM 1,25-OH D3 groups, respectively. The 0.1 µM 1,25-OH D3 induced a mild increase in ALP activity.

CONCLUSIONS: This study demonstrated that 1,25-OH D3 stimulated odontoblastic differentiation of hDPSCs in vitro in a dose-dependent manner. The high DSP + cell number and a mild increase in ALP activity suggest that DPSCs treated with 0.1 μM 1,25-OH D3 are in the later stage of odontoblastic differentiation. The results confirm that 1,25-OH D3 -added cocktail medium provides a sufficient microenvironment for the odontoblastic differentiation of hDPSCs in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app