Add like
Add dislike
Add to saved papers

An atlas of endohedral Sc 2 S cluster fullerenes.

Structural identification is a difficult task in the study of metallofullerenes, but understanding of the mechanism of formation of these structures is a pre-requisite for new high-yield synthetic methods. Here, systematic density functional theory calculations demonstrate that metal sulfide fullerenes Sc2 S@Cn have similar cage geometries from C70 to C84 and form a close-knit family of structures related by Endo-Kroto insertion/extrusion of C2 units and Stone-Wales isomerization transformations. The stabilities predicted for favoured isomers by DFT calculations are in good agreement with available experimental observations, have implications for the formation of metallofullerenes, and will aid structural identification from within the combinatorially vast pool of conceivable isomers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app