Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cellular reactions to long-term volatile organic compound (VOC) exposures.

Scientific Reports 2016 December 2
Investigations of cellular processes initiated by volatile organic compounds (VOCs) are limited when modelling realistic long-term exposure scenarios at low concentrations. Exposure to indoor VOCs is associated with a range of adverse effects, but data on molecular changes at regulatory threshold limits are lacking. Activity analysis of VOC in vitro can be a valuable complement to inhalation toxicological evaluations. We developed an exposure platform that generates a stable VOC atmosphere and allows the exposure of cells for longer periods. Using formaldehyde as a model analyte, air-liquid interface cultured A549 lung epithelial cells were exposed to critical concentrations of 0.1 and 0.5 ppm for 3 days. Owing to the lack of known exposure biomarkers, we applied a genome-wide transcriptional analysis to investigate cellular responses at these sublethal concentrations. We demonstrate a minor overlap of differentially expressed transcripts for both treatment concentrations, which can be further analyzed for their use as exposure biomarkers. Moreover, distinct expression patterns emerge for 0.1 and 0.5 ppm formaldehyde exposure, which is reflected in significant enrichment of distinct biological processes. More specifically, metabolism of specific compound classes, lipid biosynthesis and lung-associated functions are affected by lower exposure levels and processes affecting proliferation and apoptosis dominate the higher exposure levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app