Add like
Add dislike
Add to saved papers

Candida guilliermondii as a potential biocatalyst for the production of long-chain α,ω-dicarboxylic acids.

OBJECTIVES: To explore Candida guilliermondii for the production of long-chain dicarboxylic acids (DCA), we performed metabolic pathway engineering aiming to prevent DCA consumption during β-oxidation, but also to increase its production via the ω-oxidation pathway.

RESULTS: We identified the major β- and ω-oxidation pathway genes in C. guilliermondii and performed first steps in the strain improvement. A double pox disruption mutant was created that slowed growth with oleic acid but showed accelerated DCA degradation. Increase in DCA production was achieved by homologous overexpression of a plasmid borne cytochrome P450 monooxygenase gene.

CONCLUSION: C. guilliermondii is a promising biocatalyst for DCA production but further insight into its fatty acid metabolism is necessary.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app