JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A dual photoluminescence enhancement system: stabilization of a water soluble AIEE fluorogen using silver nanowire.

Faraday Discussions 2017 Februrary 23
This manuscript describes the preparation of water soluble aggregation-induced emission enhancement (AIEE)-based fluorescent organic nanoparticles (FONs). The fluorescence diversity of the FONs was investigated in the presence of silver nanowires. We observed that the emission of the FONs can be enhanced by mixing with the nanowires, which is believed to originate from resonance between the emission of the FONs and the surface plasmon resonances of the metal surface. That is, the AIEE phenomenon was promoted according to the metal-enhanced fluorescence (MEF) mechanism that can be used to build up a novel double emission enhancement (DEE) platform and to extend the range of AIEE applications. The systemic fluorescence enhancement, lifetime and photostability were measured and the AIEE-MEF evaluation and the interaction between the FONs and nanowires were discussed based on the obtained spectral data and SEM and fluorescent microscopy images.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app