Add like
Add dislike
Add to saved papers

Tongxinluo inhibits neointimal formation by regulating the expression and post-translational modification of KLF5 in macrophages.

Neointimal hyperplasia is a common pathological characteristic in diverse vascular remodeling diseases. The inflammatory response that follows vascular injury plays an important role in intimal hyperplasia. Tongxinluo (TXL), a traditional Chinese medicine, can ameliorate neointimal formation via suppressing vascular inflammatory response induced by vascular injury. However, the mechanisms underlying anti-inflammatory and anti-intimal hyperplasia of TXL are still not fully understood. The aim of present study was to examine whether the expression and post-translational modification of KLF5 were involved in the vasoprotective effects of TXL. In vivo, TXL inhibited neointimal formation induced by carotid artery injury. In vitro, TNF-α treatment of macrophages resulted in the increased proliferation and migration, but the effects of TNF-α on macrophages were blocked by TXL treatment. Next, KLF5 expression was up-regulated by carotid artery injury in vivo, as well as by exposure of macrophages to TNF-α in vitro, whereas TXL treatment abrogated the up-regulation of KLF5 by TNF-α or vascular injury. Intimal hyperplasia was strongly reduced in macrophage-specific KLF5 knockout (KLF5(ly-/-)) mice, indicating that TXL inhibits intimal hyperplasia by suppression of KLF5 expression. Furthermore, besides down-regulating KLF5 expression in macrophages, TXL also regulated KLF5 stability by ubiquitination and sumoylation of KLF5. Finally, TNF-α induced KLF5 sumoylation via PI3K/Akt signaling, whereas TXL inhibited Akt phosphorylation induced by TNF-α. We conclude that the multiple ingredients in TXL may act on different targets, which in turn generates a range of actions that manifest as a comprehensively vasoprotective effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app