Add like
Add dislike
Add to saved papers

Concerted Changes in the Phosphoproteome and Metabolome Under Different CO2/O2 Gaseous Conditions in Arabidopsis Rosettes.

Considerable efforts are currently devoted to understanding the regulation of primary carbon metabolism in plant leaves, which is known to change dramatically with environmental conditions, e.g. during light/dark transitions. Protein phosphorylation is believed to be a key factor in such a metabolic control. In fact, some studies have suggested modifications in the phosphorylation status of key enzymes in the dark compared with the light, or when photosynthesis varies. However, a general view of the phosphoproteome and reciprocal alterations in both the phosphoproteome and metabolome under a wide spectrum of CO2 and O2 conditions so as to vary both gross photosynthesis and photorespiration is currently lacking. Here, we used an instant sampling system and strictly controlled gaseous conditions to examine short-term metabolome and phosphoproteome changes in Arabidopsis rosettes. We show that light/dark, CO2 and O2 mole fraction have differential effects on enzyme phosphorylation. Phosphorylation events that appear to be the most important to regulate metabolite contents when photosynthesis varies are those associated with sugar and pyruvate metabolism: sucrose and starch synthesis are major phosphorylation-controlled steps but pyruvate utilization (by phosphoenolpyruvate carboxylase and pyruvate dehydrogenase) and pyruvate reformation (by pyruvate orthophosphate dikinase) are also subjected to phosphorylation control. Our results thus show that the phosphoproteome response to light/dark transition and gaseous conditions (CO2, O2) contributes to the rapid adjustment of major pathways of primary C metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app