JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

G-quadruplex fluorescence sensing by core-extended naphthalene diimides.

BACKGROUND: Fluorescent sensing of G-quadruplex nucleic acids (G4s) is an effective strategy to elucidate their role in vitro and in vivo. Small molecule ligands have often been exploited, producing an emission light up upon binding. Naphthalene diimides (NDIs), although potent G4 binders exhibiting red-NIR fluorophores, have only been marginally exploited, as they are usually quenched upon binding. Contrary, aggregating core-extended naphthalene diimides (cex -NDIs) proved to be effective probes.

METHODS: We prepared a library of eighteen cex -NDIs by organic synthesis, characterising their aggregation-dependent absorption and emission properties. Absorption and emission titrations, fluorescent intercalator displacement assay (FID) and circular dichroism (CD) analysis were performed to elucidate their behavior as G4 fluorescent sensors, selectivity and binding mode.

RESULTS: cex -NDIs aggregate under aqueous solvents and as a result, their fluorescence is mostly quenched under physiological conditions. Upon G4 binding, they disaggregate into binding monomers, producing a fluorescent light-up with anti-parallel and hybrid G4s. Contrary, with parallel G4s a light-off was recorded. For the formers a groove-like interaction was inferred by ICD signals, while for the latter an end-stacking interaction mode was hypothesized by G4-FID data.

CONCLUSIONS: cex -NDIs G4 sensing mechanism works via a induced disaggregation. The emission response depends on the G4 topology, which dictates the prevailing -groove or end-stacking- binding mode.

GENERAL SIGNIFICANCE: This study highlights the potential of cex -NDIs as G4 fluorescent probes. Besides being readily synthesized and conveniently emitting above 600nm, they light-up upon binding to anti-parallel and hybrid G4, complementing a number of other probes' selectivity for the parallel topology. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app