Add like
Add dislike
Add to saved papers

Multicolor Tuning in Room-Temperature Self-Activated Ca 2 Nb 2 O 7 Submicroplates by Lanthanide Doping.

Self-activated phosphors are capable of generating optical emissions from the internal ion groups of host lattice before externally introducing luminescent ions. However, numerous self-activated phosphors only show luminescence at low temperature due to the thermally activated energy migration among ion groups at room temperature, severely confining their application conditions. In this letter, we propose a strategy to converting the low-temperature luminescence to a room-temperature one through changing the synthesis conditions to induce structural distortions and thus to limit energy migration. Room-temperature self-activated luminescence of Ca2 Nb2 O7 was accordingly achieved in submicroplates synthesized using the sol-gel method. By further coupling the blue broadband emission from Ca2 Nb2 O7 submicroplates with the characteristic luminescence of Ln3+ (Pr3+ , Sm3+ , and Dy3+ ) dopants, multicolor emissions were successively tuned through adjusting the concentration of Ln3+ . Our results are expected to expand the scope of designing room-temperature self-activated phosphors and tuning multicolor emission.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app