Journal Article
Research Support, N.I.H., Extramural
Validation Studies
Add like
Add dislike
Add to saved papers

Small world properties changes in mild traumatic brain injury.

PURPOSE: To investigate local and global efficiency changes characterized by small-world properties based on resting-state functional MRI, such as centrality and clustering coefficient, in mild traumatic brain injury (MTBI) patients; and to associate these findings with axonal injury as measured by diffusion tensor imaging (DTI) as well as with post-concussive symptom (PCS).

MATERIALS AND METHODS: Thirty patients (mean age 35 ± 13 years) with clinically defined MTBI and 45 age-matched healthy controls (mean age 37 ± 10 years) participated in the experiments. Resting-state functional MRI was performed using gradient echo planar imaging sequence with 3 Tesla MRI scanner to obtain functional small-world networks. Out of all participants, 20 MTBI patients and 20 controls had available DTI data with three b-values (0, 500, 1000) s/mm2 and 30 directions for diffuse axonal injury analyses.

RESULTS: Compared with controls, MTBI patients showed lower relative betweenness centrality (P = 0.01), but significantly higher clustering coefficient (P = 0.04), and these two metrics correlated negatively in patients (r = -0.77; P < 0.001). Regions with lower betweenness centrality (e.g., frontal and occipital) corresponded with the regions of reduced FA in patients, while global FA reduction correlated with betweenness centrality (r = 0.48; P = 0.03) and clustering coefficient (r = -0.46; P = 0.04) in MTBI patients. In addition, there was significantly higher thalamocortical connectivity that correlated with clustering coefficient (r = 0.39; P = 0.03) in patients. Also, patients with higher clustering coefficient tended to have less PCS score with negative correlation (r = -0.4; P = 0.04).

CONCLUSION: Our results demonstrated significant functional small-world properties changes in patients with MTBI, and suggest decreased global efficiency, possibly due to diffuse axonal injury and local network upregulation including increased thalamo-cortical connectivity.

LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:518-527.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app