Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Evaluation of recurrent high-grade gliomas treated with bevacizumab: A preliminary report of 3D pseudocontinuous artery spin labeling.

PURPOSE: To investigate the role of cerebral blood flow (CBF) derived from a 3D fast spin echo (FSE) pseudocontinuous artery spin labeling (pcASL) sequence in evaluating the survival rate of recurrent high-grade gliomas (rHGGs) that were treated with bevacizumab (BEV).

MATERIALS AND METHODS: Sixteen patients with rHGGs who underwent 3T 3D FSE pcASL imaging 1-2 days before (baseline or pre-BEV) and within 1 month after BEV treatment initiation (post-BEV) were included in the study. Average (aCBF) and maximum (mCBF) cerebral blood flow of the enhancing tumor, their respective normalized values to contralateral normal-appearing white matter (rCBF_wm and mCBF_wm) and cerebellum (rCBF_cb and mCBF_cb), and the related changes between baseline and post-BEV were evaluated. Receiver operating characteristic (ROC) curve analysis was utilized to define the optimal cutoff perfusion values for overall survival (OS) and progression-free survival (PFS) stratification. Kaplan-Meier analysis with log-rank test was applied to assess and compare PFS and OS rates.

RESULTS: All the CBF measurements pre-BEV and post-BEV treatment were significantly different except mCBF. The CBF measurements (aCBF, rCBF_wm, rCBF_cb, mCBF_wm and mCBF_cb) pre-BEV all decreased post-BEV treatment. Cutoffs of aCBF (43.72 ml/100g/min) pre-BEV for OS, rCBF_cb (1.09) pre-BEV for PFS and OS, and ΔaCBF (-0.37) for PFS were found to be statistically significant in survival stratification (404 days vs. 140 days, P = 0.026; 251 days vs. 112 days, P = 0.044; 404 days vs. 194 days, P = 0.046; 267 days vs. 116 days, P = 0.048, respectively).

CONCLUSION: Three dimensional FSE pcASL can detect the decrease of perfusion in rHGGs treated with BEV and is a potential promising technique in stratifying survival rate of rHGGs under BEV treatment.

LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:565-573.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app