Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of chromosomal deletion of the operon encoding the multiple resistance and pH-related antiporter in Vibrio cholerae.

Microbiology 2016 December
To examine the possible physiological significance of Mrp, a multi-subunit cation/proton antiporter from Vibrio cholerae, a chromosomal deletion Δmrp of V. cholerae was constructed and characterized. The resulting mutant showed a consistent early growth defect in LB broth that became more evident at elevated pH of the growth medium and increasing Na+ or K+ loads. After 24 h incubation, these differences disappeared likely due to the concerted effort of other cation pumps in the mrp mutant. Phenotype MicroArray analyses revealed an unexpected systematic defect in nitrogen utilization in the Δmrp mutant that was complemented by using the mrpA'-F operon on an arabinose-inducible expression vector. Deletion of the mrp operon also led to hypermotility, observable on LB and M9 semi-solid agar. Surprisingly, Δmrp mutation resulted in wild-type biofilm formation in M9 despite a growth defect but the reverse was true in LB. Furthermore, the Δmrp strain exhibited higher susceptibility to amphiphilic anions. These pleiotropic phenotypes of the Δmrp mutant demonstrate how the chemiosmotic activity of Mrp contributes to the survival potential of V. cholerae despite the presence of an extended battery of cation/proton antiporters of varying ion selectivity and pH profile operating in the same membrane.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app