Comment
Journal Article
Add like
Add dislike
Add to saved papers

Divergence and rewiring of regulatory networks for neural development between human and other species.

Neural and brain development in human and other mammalian species are largely similar, but distinct features exist at the levels of macrostructure and underlying genetic control. Comparative studies of epigenetic regulation and transcription factor (TF) binding in humans, chimpanzees, rodents, and other species have found large differences in gene regulatory networks. A recent analysis of the cistromes of REST/NRSF, a critical transcriptional regulator for the nervous system, demonstrated that REST binding to syntenic genomic regions (i.e., conserved binding) represents only a small percentage of the total binding events in human and mouse embryonic stem cells. While conserved binding is significantly associated with functional features (e.g., co-factor recruitment) and enriched at genes important for neural development and function, >3000 genes, including many related to brain and neural functions, either contain extra REST-bound sites (e.g., NRXN1) or are targeted by REST only (e.g. PSEN2) in humans. Surprisingly, several genes known to have critical roles in learning and memory, or brain disorders (e.g., APP and HTT) exhibit characteristics of human specific REST regulation. These findings indicate that more systematic studies are needed to better understand the divergent wiring of regulatory networks in humans, mice, and other mammals and their functional implications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app