JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Islet ChREBP-β is increased in diabetes and controls ChREBP-α and glucose-induced gene expression via a negative feedback loop.

Molecular Metabolism 2016 December
OBJECTIVE: Carbohydrate-response element-binding protein (ChREBP) is the major transcription factor conferring glucose-induced gene expression in pancreatic islets, liver and adipose tissue. Recently, a novel ChREBP isoform, ChREBP-β, was identified in adipose tissue and found to be also expressed in islets and involved in glucose-induced beta cell proliferation. However, the physiological function of this less abundant β-isoform in the islet, and in diabetes, is largely unknown. The aims of the present study, therefore, were to determine how diabetes affects ChREBP-β and elucidate its physiological role in pancreatic beta cells.

METHODS: Non-obese diabetic and obese, diabetic ob/ob mice were used as models of T1D and T2D and human islets and the rat INS-1 beta cell line were exposed to low/high glucose and used for ChREBP isoform-specific gain-and-loss-of-function experiments. Changes in ChREBP-β and ChREBP-α were assessed by qRT-PCR, immunoblotting, promoter luciferase, and chromatin immunoprecipitation studies.

RESULTS: Expression of the ChREBP-β isoform was highly induced in diabetes and by glucose, whereas ChREBP-α was downregulated. Interestingly, ChREBP-β gain-of-function experiments further revealed that it was ChREBP-β that downregulated ChREBP-α through a negative feedback loop. On the other hand, ChREBP-β knockdown led to unabated ChREBP-α activity and glucose-induced expression of target genes, suggesting that one of the physiological roles of this novel β-isoform is to help keep glucose-induced and ChREBP-α-mediated gene expression under control.

CONCLUSIONS: We have identified a previously unappreciated negative feedback loop by which glucose-induced ChREBP-β downregulates ChREBP-α-signaling providing new insight into the physiological role of islet ChREBP-β and into the regulation of glucose-induced gene expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app