Add like
Add dislike
Add to saved papers

Notch4 inhibition reduces migration and invasion and enhances sensitivity to docetaxel by inhibiting Akt/fascin in pancreatic cancer cells.

Oncology Letters 2016 November
Overexpression of Notch4 is associated with a variety of tumor types. Only sparse information exists on Notch4 expression in pancreatic cancer (PC). The present study demonstrated that Notch4 expression was significantly upregulated in PC cell lines compared with a non-transformed pancreatic epithelial cell line, HPDE6c-7. To investigate the possible role of Notch4 in PC cells, an RNA interference approach was used to silence Notch4 expression. The results revealed that small interfering RNA (siRNA) targeting Notch4 significantly impeded the viability, migration and invasion abilities of PC cells in vitro. Downregulation of Notch4 with siRNA sensitized cells to the action of docetaxel. Furthermore, Notch4 downregulation enhanced the inhibition of Akt activation and the fascin expression induced by docetaxel in PC cells. Together, these data provide insight into the function of Notch4 and suggest that Notch4 may represent a new potential target for gene therapy in PC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app