Add like
Add dislike
Add to saved papers

Thalidomide attenuates the development and expression of antinociceptive tolerance to μ-opioid agonist morphine through l-arginine-iNOS and nitric oxide pathway.

Morphine is a μ-opioid analgesic drug which is used in the treatment and management of chronic pain. However, due to development of antinociceptive tolerance its clinical use is limited. Thalidomide is an old glutamic acid derivative which recently reemerged because of its potential to counteract a number of disorders including neurodegenerative disorders. The potential underlying mechanisms and effects of thalidomide on morphine-induced antinociceptive tolerance is still elusive. Hence, the present study was designed to explore the effect of thalidomide on the development and expression of morphine antinociceptive tolerance targeting l-arginine-nitric oxide (NO) pathway in mice and T98G human glioblastoma cell line. When thalidomide was administered in a dose of 17.5mg/kg before each dose of morphine chronically for 5days it prevented the development of antinociceptive tolerance. Also, a single dose of thalidomide 20mg/kg attenuated the expression phase of antinociceptive tolerance. The protective effect of thalidomide was augmented in development phase when co-administration with NOS inhibitors like L-NAME (non- selective NOS inhibitor; 2mg/kg) or aminoguanidine (selective inducible NOS inhibitor; 50mg/kg). Also, the reversal effect of thalidomide in expression phase was potentiated when concomitantly administrated with L-NAME (5mg/kg) or aminoguanidine (100mg/kg). Co-administration of ODQ (a guanylyl cyclase inhibitor) 10mg/kg in developmental phase or 20mg/kg in expression phase also progressively increased the pain threshold. In addition, thalidomide (20μM) also significantly inhibited the overexpression of iNOS gene induced by morphine (2.5μM) in T98G cell line. Hence, our findings suggest that thalidomide has protective effect both in the development and expression phases of morphine antinociceptive tolerance. It is also evident that this effect of thalidomide is induced by the inhibition of NOS enzyme predominantly iNOS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app